Finite groups with an automorphism of large order

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AUTOMORPHISM GROUP OF GROUPS OF ORDER pqr

H"{o}lder in 1893 characterized all groups of order $pqr$ where  $p>q>r$ are prime numbers. In this paper,  by using new presentations of these groups, we compute their full automorphism group.

متن کامل

Elements of finite order in automorphism groups of homogeneous structures

We study properties of the automorphism groups of Fräıssé limits of classes with certain strong amalgamation properties, including classes with the free amalgamation property and classes of metric spaces. We discuss conditions on a Fräıssé class K that imply that the automorphism group GK of its limit admits generic elements of order n for all n and show that, for many such K, any element of GK...

متن کامل

Automorphism groups of finite posets

For any finite group G, we construct a finite poset (or equivalently, a finite T0-space) X, whose group of automorphisms is isomorphic to G. If the order of the group is n and it has r generators, X has n(r+2) points. This construction improves previous results by G. Birkhoff and M.C. Thornton. The relationship between automorphisms and homotopy types is also analyzed.

متن کامل

Finite Groups with an Automorphism Cubing a Large Fraction of Elements

We investigate the possible structures imposed on a finite group by its possession of an automorphism sending a large fraction of the group elements to their cubes, the philosophy being that this should force the group to be, in some sense, close to abelian. We prove two main theorems. In the first, we completely classify all finite groups with an automorphism cubing more than half their elemen...

متن کامل

Finite groups with $X$-quasipermutable subgroups of prime power order

Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Group Theory

سال: 2017

ISSN: 1433-5883,1435-4446

DOI: 10.1515/jgth-2017-0003